Quark Matter 2008 summary February 4-10 in Jaipur, India (selected topics...)

Vi Nham Tram
NSD meeting

A dense matter is observed when colliding heavy ions

Discussion about the properties of the medium

Heavy ions collisions

Outline

- Hard probes (early stage in the collision)
 - Jets
 - heavy quarks
- Leptons and dileptons
 - Do not interact strongly
 - Thermal radiation : T

Nuclear Modification Factor

- It measures the deviation of the nucleus-nucleus collision from a superposition of pp collision (N_{coll})
 - For particles from hard processes,
 N_{coll} scaling expected
 - For particles from soft processes
 (bulk), N_{part} scaling expected
- Centrality used to define impact parameter (b) of the collision
 - Small b => central collision
 - Large b => peripheral collision

$$R_{AB} = \frac{1}{N_{Coll}} \frac{d^2 N^{AB} / dp_T d\eta}{d^2 \sigma^{pp} / dp_T d\eta}$$

 $R_{AB} = 1 \rightarrow \text{no nuclear effects (hard probes)}$

How do we study it? Single hadron

How do we study it? Di-hadron correlation

PRL 91 (2003) 072304

 $\Delta \phi$ (radians)

Both results: significant suppression

The hard jet loses a significant amount of its energy via radiating gluon induced by multiple scattering

Can we characterize the medium?

Quantify its density?

How sensitive to Energy loss?

Single hadron emitted from the surface

Energy loss parameter : ϵ_0 α initial density (in most central collisions)

Di-hadron correlations more sensitive to probe of initial density

H. Zhong, XN Wang et al., PRL 97 (2006) 25

Fit to all single hadron Raa factors in Au+Au with different impact parameters at RHIC energy

Better precision of measurements => Qualitative to quantitative

Is there a difference in E_{loss} of q and g?

 Energy loss for gluon radiation is higher for gluon than for quark : color factor effect

$$\frac{\Delta E_g}{\Delta E_a} \sim 9/4$$

- Proton jet dominantly from gluon and pions jet from quarks
- Higher suppression of gluons lead to higher suppression of proton

Naïve factor 9/4 Color effects not observed up to p_T ~ 12 GeV/c

Heavy quark energy loss, unsolved puzzle

Mass hierarchy :

$$-\Delta E_{q}(m=0) > \Delta E_{q}(m>0)$$

- Measurement at high p_T via semi-leptonic decay
- high p_T non-photonic e[±] suppression, increasing with centrality

What fraction of this is bottom?

Bottom fraction

Morino QM06 Mischke QM06

High pt B suppressed?

HOWEVER model base on simulation: model dependent Next step: Need to measure it with displaced vertices with upgrade vertex detectors (STAR and PHENIX)

Ridge in Heavy Ion Collisions

Long range $\Delta \eta$ correlations in A+A collisions. Persists up to high p_T -trig.

- What is the Ridge?
 - medium response induced by the jet ?
 - Jet modification in the medium ?

Path length effect on ridge correlations

Jet: Slight to no increases with ϕ_S . Au+Au ~ d+Au

Ridge: Decreases with ϕ_S

Little to no ridge at larger ϕ_S

 $3 < p_T^{trig} < 4 \text{ GeV/c}, p_T^{asso} : 1.0 - 1.5 \text{ GeV/c}$ Strong jet-medium interaction when in reaction plane

Minimal jet-medium interaction when perp. to reaction plane

Ridge: system size, centrality

- ✓ Near-side jet yield independent of colliding system, N_{part} and trigger particle type
- √ Ridge yield increases with N_{part}

Particle Ratios : Jet & Ridge

STAR Preliminary

Jet Cone vs. Bulk

s. Bulk Ridge vs. Bulk

Jet:

 $\Lambda/{\rm K^0_s} \sim 0.5 < {\rm inclusive}$ (anti)p/ π < inclusive

- ✓ Ratios in cone smaller than inclusive
- ✓ Ratios in ridge similar to inclusive

Ridge:

 $\Lambda/K_{\rm s}^0$ ~ 1 ~ inclusive (anti)p/ π ~ inclusive

Properties of the ridge similar to the bulk and different of the jet

Direct γ and low mass dilepton for p+p, Au+Au

- Low mass dielectron: Enhancement at low mass in central AuAu, especially at low pt
- Direct photon :significant low p_T excess above p+p expectations
 - Excess from thermal photon emission -> Initial T

Summary and Outlook

Energy loss

- Higher statistics allows to gain in sensitivity to determine initial density of the medium
- Color factor effect not observed at high pt region, are we sensitive? We need calculations!
- Heavy quark energy loss still unsolved but progress with
 B/(B+D) ratio, next step measurement with vertex detector
- Correlation: properties of the ridge similar to the bulk and different of the jet

Summary and outlook

- What are the sources of the dilepton excess at low mass?
 Thermal photon?
 - Thermal photon can reveal about thermodynamic info
 - Interpretation soon ? T fit ?
- First step towards quantitative comparison between theory and experiment that will characterize the properties of the medium
 - Higher statistics
 - new analysis approaches
- Theory analysis should go hand in hand with the experimental effort to yield quantitative results